Boiling liquid expanding vapor explosion: experimental research in the evolution of the two-phase flow and over-pressure.
نویسندگان
چکیده
In a boiling liquid expanding vapor explosion (BLEVE), the superheating and boiling of the liquefied gas inside the vessel as it fails is important information necessary to understand the mechanism of this type of disaster. In this paper, a small-scale experiment was developed to investigate the possible processes that could lead to a BLEVE. Water was used as the test fluid. High-speed video was utilized to observe the two-phase flow swelling which occurred immediately following the partial loss of containment through a simulated crack. The velocity of the two-phase swelling was measured along with pressure and temperature. It was observed that initially a mist-like two-phase layer was rapidly formed on the liquid surface (~3-4 ms) after the vessel opened. The superheated liquid rapidly boiled and this accelerated upwards the two-phase layer, the whole liquid boiled after about 17 ms form opening. It was supposed that the swelling of the two-phase layer was the possible reason for the first over-pressure measured at the top and bottom of the vessel. From 38 ms to 168 ms, the boiling of the superheated liquid weakened. And from 170 ms, the original drop/mist-like two-phase flow turned into a churn-turbulent bubbly two-phase flow, rose quickly in the field of the camera and eventually impacted the vessel top wall. The force of its impact and "cavitation" and "choke" following with the two-phase ejection were maybe main reasons for the second obvious pressure increasing.
منابع مشابه
ررسی تجربی افت فشار جریان جوششی مبرد R-134a در لولههای افقی
The pressure drop of refrigerant R-134a flow boiling inside a horizontal tube has been investigated experimentally. The test set-up which was used in this investigation is a well instrumented vapor compression refrigeration system. These instruments are thermocouples, flow meter, pressure gauges and the pressure drop measuring apparatus. This system consisted of three electrically heated evapor...
متن کاملModeling of Upward Subcooled Flow Boiling of Refrigerant-113 in a Vertical Annulus
In this paper, a modified two-fluid model has been adopted to simulate the process of upward vertical subcooled flow boiling of refrigerant R-113 in a vertical annular channel at low pressure. The modified model considers temperature dependent properties and saturation temperature variation and was validated against a number of published low-pressure subcooled boiling experiments. The results s...
متن کاملTwo Phase Heat Transfer Characteristics in a Vertical Small Diameter Tube at Sub Atmospheric Pressure
Two-phase heat transfer is experimentally examined through vertical small diameter tubes, D =1.45 and 2.8 mm using water under a pressure of 50 to 81 kPa and a natural circulation condition. The pool boiling correlation by Stephan-Abdelsalam and the thermosyphon boiling correlation by Imura, et al. predict the measured experimental data in the 2.8 mm tube with an error of -30%. A large heat tra...
متن کاملTwo Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine
Basic understanding of the process of coolant heat transfer inside an engine is an indispensable prerequisite to devise an infallible cooling strategy. Coolant flow and its heat transfer affect the cooling efficiency, thermal load of heated components, and thermal efficiency of a diesel engine. An efficient approach to studying cooling system for diesel engine is a 3D computational fluid dynami...
متن کاملSubcooled two-phase flow boiling in a microchannel heat sink: comparison of conventional numerical models
Subcooled flow boiling in multi-microchannels can be used as an efficient thermal management approach in compact electrical devices. Highly subcooled flow boiling of HFE 7100 is studied in two microchannel heat sinks to choose a proper numerical model for simulating boiling flows in microchannels. Results of five different numerical models, including Volume of Fluid (VOF), Eulerian boiling, Eul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 156 1-3 شماره
صفحات -
تاریخ انتشار 2008